Classification of δ(2,n− 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms
نویسندگان
چکیده
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملisotropic lagrangian submanifolds in complex space forms
in this paper we study isotropic lagrangian submanifolds , in complex space forms . it is shown that they are either totally geodesic or minimal in the complex projective space , if . when , they are either totally geodesic or minimal in . we also give a classification of semi-parallel lagrangian h-umbilical submanifolds.
متن کاملIdeal Slant Submanifolds in Complex Space Forms
Roughly speaking, an ideal immersion of a Riemannian manifold into a space form is an isometric immersion which produces the least possible amount of tension from the ambient space at each point of the submanifold. Recently, B.-Y. Chen studied Lagrangian submanifolds in complex space forms which are ideal. He proved that such submanifolds are minimal. He also classified ideal Lagrangian submani...
متن کاملHamiltonian-minimal Lagrangian submanifolds in complex space forms
Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2018
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.10.044